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Introduction 
 
 
All discussed topics are available in the Concept Edition  of SCIA Engineer, unless it is explicitely 
mentionned for a certain specific topic. 
 
 
 
As an introduction, some basic rules for good use of fem software are given: 
 

• Do not start too complex. It is better to draw up a coarse model first and to refine it afterwards. From 
the coarse model a number of primary conclusions can be already drawn to simplify the rest of the 
course of the modelling. 

• In many cases the Finite Element mesh is too coarse in a specific detail area to obtain exact results. 
Instead of trying to refine the mesh in such an area, it is mostly advisable to draw up a submodel of 
the detail. 

• Drawing up a submodel is based on the St. Venant principle that indicates that if the real force 
distribution is replaced by a static equivalent system, the stress distribution is only influenced in the 
direct environment of the point of application of the forces. Specifically this means that if the edges of 
the submodel are removed far enough of the stress concentrations that you want to examine, the 
submodel gives reliable results. 

• Restrict the structure type to the necessary. It is not always necessary to model a 3D structure. A 2D 
environment can provide just as good results in a quicker and simpler way. Especially the restriction 
of the number of degrees of freedom can lead to fewer problems with the calculation. 

• If possible, use symmetry to restrict the calculation model in size. 

• Always apply/test new functionalities, special techniques to a small project and apply it only 
afterwards on the real complex project. 

• Always calculate the structure after modelling, loaded with the self weight. The other loads can only 
be imported when no problems were encountered. 

• Always consider the compliances of the construction as a whole with an instability/singularity. If the 
degrees of freedom are obstructed for the entire structure according to the construction type, only 
then take a look at the members. 

• After calculation: 

o Checking the reaction forces 

o Checking if the moment diagram progresses as expected  

o Checking if the structure is deformed as expected 

• If possible, always perform a coarse/short manual calculation to verify the order of magnitude of the 
results. 
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Mesh generation 

Mesh settings 
Under Calculation, Mesh  Mesh setup , or under Setup  Mesh , the mesh can be configured. The 
mesh settings here will be applied on the entire project, unless local mesh refinements are applied. 
 
The most important mesh settings are indicated with the red box. 
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General mesh settings 

Minimal distance between 
two points [m] 

If the distance  between two mesh nodes is lower than the value 
specified here, the two points are automatically merged into one single 
point. This option applies for both 1D and 2D elements. 

Average number of tiles 1D 
element 

If necessary, more than one finite element may be generated on a 
single beam. The value here specifies how many finite elements should 
be created on the beam. 

This value is only taken into account if the original beam is longer than 
the adjusted Minimal length of beam element and shorter than the 
adjusted  

Average size of 2D 
element/curved element [m] 

The average size of the edge for 2D elements. The size, defined here, 
may be changed through refining the mesh in specified points.  

This option also defines the magnitude of finite elements generated on 
curved beams.  

Definition of mesh element 
size for panels 

This applies only to load panels.  

If the load transfer method for load panels is set to Accurate (FEM) , 
then a FEM analysis is performed to define the load transfer. By this 
setting the mesh size of such load panels can be defined. 

Average size of panel 
element [m] 

This applies only to load panels.  

This option is only used when to option above is set to Manual . 

Defines the average size of mesh elements for load panels. 

Elastic mesh If this option is activated, then the mesh generator will assume that the 
segments of the mesh are elastic . This allows further maintenance of 
numerical stability in case of strong mesh refinements. 

Use automatic mesh 
refinement 

Only available if Elastic mesh is activated . 

The mesh will automatically be refined based on a certain load case. 
The refinement happens on mesh generation after calculation (so 
only after generating the mesh after the linear calculation has already 
been done) until the target error is achieved. 

Target error for mesh 
refinement [%] 

Only available if Use automatic mesh refinement is activated . 

When an already calculated project is meshed again, the mesh will be 
refined on certain positions until the target error is achieved. 

Load case for mesh 
refinement 

Only available if Use automatic mesh refinement is activated . 

Automatic mesh refinements are done based on this load case. On the 
positions where peak results appear, the mesh will be refined. 

Hanging nodes This applies only to  post-tensioned cables . 

Post-tensioned tendons will be calculated by placing at the real position 
of the tendons. The nodes are ‘hanging’ at a distance from the model. 
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1D elements  

Minimal length of beam 
element [m] 

When a beam of the structure is shorter than the value here specified, 
then the beam is no longer divided into multiple finite elements even 
though the parameter above (Average number of tiles of 1D element)  
says so.   

Maximal length of beam 
element [m] 

If a beam of the structure is longer than the value specified here, then 
the beam will be divided into multiple finite elements so the condition of 
maximal length is satisfied. 

Average size of cables, 
tendons, elements on 
subsoil, nonlinear soil spring 
[m] 

To obtain correct results, it is necessary to generate a much finer 
mesh  on cables, tendons (prestressed concrete) and beams on subsoil. 

Generation of nodes in 
connections of beam 
elements 

If this option is ON, a check for "touching" beams is performed. If an 
end node of one beam "touches" another beam in a point where there is 
no node, then the two beams are connected by a FE node.  

If the option is OFF, such a situation remains unsolved and the beams 
are not connected to each other. 

The function has the same effect as performing the function Check of 
data . 

Generation of nodes under 
concentrated loads on beam 
elements 

If this option is ON, finite elements nodes are generated in points where 
the concentrated  load  is acting. This option is normally not required. 

Generation of eccentric 
elements on members with 
variable height 

This specifies the number of finite elements generated on a haunch. 
This option prescribes the precision of the modelling. The larger  the 
number, the better the model approaches the reality . 

Division on haunches and 
arbitrary members. 

Finite elements will always receive a constant height, rigidity and cross-
section. So haunches and arbitrary members must be divided into 
different finite elements according to this number. 

Division for 2D-1D upgrade When performing the 2D-1D upgrade , this mesh setting will be used. 

Mesh refinement following 
the beam type This specifies if the nodal refinements should also be applied on beam 

members. The nodal refinement  is represented by a volumetric 
element, namely a sphere. As a consequent, the mesh of all the 
structure elements situated in this sphere will be refined taking the 
following possibilities into account: 

None                                                                                                                              
The refinement is applied to 2D members only. 

Beams  and  columns                                                                                                                                  
The refinement is applied to elements which have the type beam or 
columns, or a type of beam or column, but not to ribs for example. 

All  1D members                                                                                                                              
The mesh refinement is applied to all 1D members. 
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2D elements  

To generate predefined 
mesh 

If this option is ON, the mesh generator first tries to generate a regular 
quadrilateral finite element mesh i n every slab complying with the 
adjusted element-size parameters. Only if required, additional needed 
nodes are added to the mesh. 

If this option is OFF, the finite element mesh nodes are first generated 
along the edges and further, the mesh is generated to the middle of the 
plate.  

Generally, the first option is faster, gives less 2D mesh elements and 
has a regular mesh in the middle of the plate. At the transition to an 
inclined edge the elements can be less optimal. The parameter ratio 
predefined mesh determines the distance (in relation to the element 
size) between the predefined mesh and the edges.  

To smooth the border of 
predefined mesh 

If this option is ON, the border elements of the predefined mesh are 
included into the process of smoothening, i.e. the mesh area consisting 
of regular quadrilaterals can be increased. 

Maximal out of plane angle 
of a quadrilateral element 
[mrad] 

This value determines whether a spatial quadrilateral element whose 
nodes are not in one plane will be replaced by triangular elements. This 
parameter is only meaningful for out-of-plane surfaces – shells. The 
assessed angle is measured between the plane made of three nodes of 
the quadrilateral and the remaining node of this quadrilateral. 

Predefined mesh ratio Defines the relative distance between the predefined mesh formed by 
regular quadrilateral elements and the nearest edge. The edge may 
consist of an internal edge, external edge or border of refined area. The 
final distance is calculated as a multiple of the defined ratio and 
adjusted average element size 

for 2D elements. 
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Mesh size 2D elements 
The correct mesh size is a vague concept. A finer mesh gives better results in general, but in case of 
singularities or peak values, a finer mesh makes these peaks much worse. 
 
In SCIA Engineer, the results on plates are by default already post-processed. This means that you 
see results that are a bit brushed up.  
 

Model 
The mesh size will be evaluated for the project Mesh_Size_2D.esa . 
 

 
 

The project start with a mesh size of 1m for the 2D elements. 
 

 
 
The loads in the project consist of only the self weight. 

 

Results  

The linear calculation is performed. When looking at the internal forces on the 2D element, the 
following results can be shown (under Results  2D members  internal forces   mx) 
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As mentioned before, these results are post-processed 
results. The post-processing configuration can be seen in 
the property ‘location’ . 
 
There are 4 choices for ‘location’ : More details can be 
found in annex 2. 

1. In centres 

This option will show the results averaged per finite 
element. The result will look like a mosaic. 

2. In nodes, no avg. 

This option gives the unchanged results, which originate 
directly from the solver. These can be called the ‘pure’ 
results. 

3. In nodes, avg. 
This option will taken a parabolic average of results in 
each mesh node. This will make give a more fluid 
representation when showing the results. 

4. In nodes, avg. on macro 
This option does the same as the option above, as long 
as the finite elements come from the same plate, wall or 
shell. Unlike the previous option, this one will not 
average results from a plate and wall for example. 

 
It is clear that the results of the option ‘In nodes, no avg .’ must be investigated. 
We use a fixed palette so to have a better comparison of results. 
 

 
 
The results are not alike, which means that the post-processing has quite a big impact on the 
representation of results. This indicates that the mesh is not fine enough. 
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Solution  

A rule of thumb for concrete plates is to take a mesh size equal to 1 or 2 times the thickness of the 
plate. In this project that would be 1 or 2 times 0,2m for the wall, and 0,3 for the plate. Let’s take a 
mesh size of 0,25m. 
 
The unprocessed results now look like this: 
 

 
 
While the processed results look like this: 
 

 
 

The results with or without post-processing have a very similar presentation of results. This indicates 
that the mesh is fine enough. 
 
If necessary, it is also possible to use local mesh refinements. These can be found in the main menu 
under “Calculation, mesh  local mesh refinement ”. 
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Elastic mesh 
In the project “Mesh_Elastic.esa” we are going to show the effect of using an elastic mesh. 

Model 

The model has the dimensions shown in the image below.  
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Results 

First the mesh is generated without the elastic mesh. This can be set in the mesh settings: 
 

 
 
The global mesh setting is 0,2m. 
 
The mesh can be generated by using Calculation, Mesh  Mesh generation , or in ‘Project’  toolbar 

with the icon:  
 
The mesh can be displayed by the view parameters. These can in the graphical display bar under Set 

view parameters for all  > Structure > Mesh > Draw mesh.  
 
The elastic mesh in the mesh setup provides a fluent transition between mesh sizes. 
 

Elastic mesh on (default setting):  

 

Elastic mesh off: 
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Automatic mesh refinement 
SCIA Engineer 14 offers a new feature - Automatic mesh refinement. A fine mesh of finite elements 
produces more accurate results than a coarse mesh. But to find the correct fine mesh is sometimes a very 
hard task for a user. Therefore, we are releasing this new method for automatic mesh refinement. This 
method has been developed in collaboration with our partners – FEM consulting s.r.o and Czech Technical 
University in Prague. Our solution reflects state of the art error estimation methods. The benefit of the 
method is also that now information is given about the quality of results due to the used mesh density of two-
dimensional mesh elements. 

Model 

The model Mesh_Automatic.esa  is composed of a ground and top, separated by multiple columns. 
 

 
 

Results 
As indicated in the example about mesh refinements, the mesh can be judged by going to a 2D result, 
and setting the ‘Location’ to ‘In nodes, no avg.’. In the image below, the moment mx has been asked 
for the self weight. 
 

 
 
The mesh is certainly not good enough. You can see that there are incoherent results and peak values near 
the columns. 
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Solution 
Now we will perform an automatic mesh refinement based on the results for the self weight. 
To perform the automatic mesh refinement, the next steps are required. 

1. Activate the automatic mesh refinement. 

a. Go to the mesh settings. 

b. Activate both elastic mesh and automatic mesh refinement. 

c. Choose the load case and the target error for the mesh refinement. 
 

 
 

2. Perform the linear calculation. You will also receive information about the error estimation for the load 
case configured in the previous step. 

 

 
 

3. If desired, you can check the numerical error by going to the results menu and by checking “Num. Error, 
Mesh refinement” for the 2D elements. 

 

 

 

4. To perform the automatic mesh refinement, you must manually click on the 
mesh generation. This option can be found under Calculation, mesh . 
 

5. Now perform the linear calculation again. The estimated error will have 
reduced, since the mesh has been refined. 
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6. To go even further in the mesh refinement, run through steps 4 and 5 until the desired result is 
achieved. 

 
 
After just 1 mesh refinement, the mesh is now locally refined. 
 

 
 
 
The unprocessed result for mx also shows less jumps. 
 

 
 
 
To improve the results, we advise to also add averaging strips. This is treated in the chapter about 
singularities. 
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Singularities and peak values 
1D elements are modeled as frames. The elements are represented by lines which are linked together 
in nodes. 
 
2D elements are modeled as surfaces. The elements are represented by planes which are linked 
together over the edges. 
 
If a 1D member is connected to a 2D member in a single node, this can introduce problems. 
The 2D element will not be able to transfer all forces from the 1D element in just the node. This is what 
we call a singularity. 

- Peak results will appear in the 2D element. 

- The connecting node will seem to be partly hinged. 
 

Nodal support - Averaging strips 
In most cases, a column or pole is introduced as a nodal support. The real dimensions of the support 
are neglected. In the Finite Element Method this is a singular node and the bending moment above this 
support is theoretically infinite. The moment will also converge to this infinite value with increasing 
mesh refinement.  
 
Refining of the mesh does not lead to the desired results in this case since the moment does not 
converge to the real value. A possible solution is to use averaging strips. 

Model 

A square slab is inputted with dimensions 2m x 2m in the model Singularities_AveragingStrips.esa.  
The mesh size is set to 0,25m and a surface load of 5kN/m² is inserted.  
 

 
 

Results 

After the calculation, the following results for mx in 
nodes not averaged are obtained: 
 
It is clear that peak values occur due to the 
reaction force of the nodal support. 
 
This peak value is correct and converges to the 
theoretical value infinity by increasing the mesh 
refinement.   
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Solution 

An averaging strip will be added to take care of the peaks due to the 
reduced connection size of the analytical model. 
 
An averaging strip was inputted in the Y-direction with “Direction” 
set to “Perpendicular” and a width of “1m”:  
 

 
 

Now the result of mx (in nodes, not averaged) with the averaging strip become: 
 

 
 
By looking at the numerical results, a manual verification can be made. First we look at the averaged 
results. 
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For the same X-coordinate, in each element the same value will be obtained. Looking at the results in 
numbers without the averaging strip, the same value can be calculated taking the average of one line 
with the same X-coordinate within the averaging strip. 
 

 
 
The -1,60 from the previous page can be found as: 
 −0,41 − 1,33 − 1,84 − 2,78 − 2,78 − 1,87 − 1,36 − 0,458 = −12,828 = −1,6025 



Singularities and peak values 
 

21 

 
This averaging strip was defined as “Perpendicular” and inputted in the Y-direction. Looking at mx 
(perpendicular to the Y-direction) an average will be made. 
When we look at my (parallel with the Y-direction) no average will be made: 

 
 

 
 
 
 

  
 
 
 
 
 
 
 
 

 
 

 
When changing this average strip from perpendicular to longitudinal, an average will be made for my 
but not anymore for mx. 
 

 
 
 
 
 
 
 
 
 

 

Note : The averaging algorithm uses only the finite 
elements that are located inside the averaging strip.  

This may cause certain inaccuracies especially in combination with larger finite elements.  
Therefore, it is recommended to define internal edges along the averaging strips .  
This ensures that finite element nodes are generated along the edge of the averaging strip, which 
may significantly improve the accuracy. 

The recommended procedure is thus: 

-   Define the model of the structure 

-   Perform the calculation 

-   Review the results 

-   Define averaging strips 

-   Review the averaged results 

-   Decide the final location and number of averaging strips 

-   Define internal edges along the averaging strips 

-   Repeat the calculation to obtain the improved results 
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Nodal support – Subregions 
Instead of using averaging strips for plates supported by nodal supports or by columns, it is also a 
possibility to calculate this moment correctly by introducing the column not as a nodal support but as a 
flexible supported subregion. The dimensions of the subregion are the dimensions of the column. The 
flexible support can be calculated out of the stiffness of the column. The results of such an approach 
are compared to the results of a nodal support in the example below. 
 
With an element mesh of half the dimension of the column, the model with a subregion gives a good 
value of the occurring moment. The value is a little bit higher than the real occurring moment. An even 
finer mesh gives unreal values. An element size equal to the dimension of the column is too coarse 
and gives an underestimation of the real occurring moment.  
 

Model 

In this example (model Singularities_Subregions.esa ) a floor structure is analyzed. It is supported by 
columns with a distance of 6 m. The plate has a thickness of 0,2 m and is made of concrete C25/30 
according to the EC. The whole is charged with a surface load of 100 kN/m². 
 
For the calculation one field of 6mx6m is considered. In the middle of this field a nodal support is 
inserted to represent the column. At the edges the rotation of the plate is prevented in both directions 
since the plate is stuck ‘on itself’. 
 
In the first case the column is introduced by means of a nodal support. Secondly, the column is made 
as a sub region supported by a flexible foundation. And in the last case, an averaging strip is used with 
the dimensions of the column.  
 
For the calculation of the stiffness a concrete column has been taken with a E-modulus of 32.000 MPa, 
height 4m and cross-section 0,5m x 0,5m.  
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Results 

The results show the greatest peak value when the nodal support is used without an averaging strip. 
The moment is strongly reduced when a subregion has been used. 
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The structure is calculated with Mindlin elements. The results are claimed in nodes, averaging.  
The table below shows the maximal value of mx above the nodal support or the subregion. 
 

 
Element size [m]  

 
Nodal support 

[kNm/m] 
 

 
Elastic foundation  

[kNm/m] 

 
Averaging strip 

[kNm/m] 

1 -840,21 -459,56 -767,07 

0,5 -1077,77 -491,40 -932,79 

0,25 -1316,08 -693,83 -1030,88 

0,125 -1556,74 -722,04 -1065,97 

0,0625 -1796,93 -723,16 -1076,01 

 
 
This table can also be plotted to show the convergence. 
 

 
 

Conclusion 

The buffering effect of the subsoil on the result is clearly noticeable. 
From this, you can conclude that the subsoil will approach the reality most accurately. 
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Rigid line supports 
A frequently occurring misunderstanding is the fact that the user thinks that a simple plate supported 
on 2 edges behaves as a beam. This is only the case without transverse contraction (if ν = 0). With 
normal values of the Poisson coefficient (ν = 0,2 or ν = 0,3) very high peaks of the reactions appear 
near the angles. 
 
Mesh refinement does not offer a good solution in this case and even increases the peak value.  
 
This peak value is correct and converges to the theoretical value infinity by increasing the mesh 
refinement. This can be explained as follows:          
 
Consider the plate as different beams which lie next to each other. With ν = 0,2, the bottom of the 
beam becomes smaller, the top on the other hand becomes broader. The plate is going to bend in a 
direction parallel to the supported edges, with the round side upwards (saddle forming: the plate 
deforms in the bearing direction with the round side upwards). This bending is prevented by the line 
supports. 
 
In a continuous plate this will cause bending moments my in the transverse direction, approximately 
with a size of 0,2 mx. If this moment my occurred along the entire width of the plate, the reaction would 
be constant. However, the moment has to be zero on the free edges. So, it seems that an opposite 
moment 0,2 mx exists on this edge, that which leads to great reactions in the corners. In other words: 
at the end of the plate the saddle forming is not prevented anymore by the moments in the plate. The 
plate wants to deform downwards at the end, which is prevented by the rigid supports. Because of this, 
very large reactions appear.  
 

Model 

 
In the example Singularities_PlateBeam.esa , a plate of 3mx10m is calculated according to EC. The 
material is made of concrete C25/30. The thickness of the plate amounts to 200 mm. The plate is 
supported on the long edges and is loaded by a uniform load of 100 kN/m2. 
 
Without the plate action a uniform line load of 150 kN/m is expected along each border.  
 

Results 

The plate is calculated with an increasingly finer mesh. The maximal reaction in the corner increases 
more and more. The image below shows the result for a mesh size of 0,1m. 
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Solution 

The peak in the reaction can be attributed to the infinite stiffness of the support. A realistic stiffness 
reduces the peak value considerably. 
  
Assume that the rigid supports should represent a concrete wall with E-modulus 32.000 MPa, a 
thickness of 0,1m and a height of 4m. This wall would have a certain rigidity.  
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By assigning this rigidity to the line supports, the peak value disappears and no longer poses a 
problem when refining the mesh. 
 

 
Element size [m] 

 
max. reaction rigid 

support [kN/m] 
 

 
max. Reaction flexible 

support [kN/m] 

 
Reduction peak 

value % 

0,8 179,62 175,28 2,42 % 

0,4 232,84 204,93 11,99 % 

0,2 326,44 225,16 31,03 % 

0,1 438,90 231,95 47,15 % 

0,05 549,06 233,67 57,44 % 

 
 
This last table can also be represented in a graphical representation. 
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Connecting 1D and 2D members 
 
If a 1D member is connected to a 2D member in a single node, this can introduce problems. 
The 2D element will not be able to transfer all forces from the 1D element in just the node. 

- Peak results will appear in the 2D element. 

- The connecting node will seem to be partly hinged. 
 

Example 1: Beams between walls 

Model 

When two walls are connected with a beam, this phenomenon can appear.  
 

In the following example (“Singularities_1D_2D_Moment_Walls.esa ”), two walls with a dimension of 
4x4 m are connected with each other by means of a beam with a length of 4m. This member is loaded 
in the middle through a point force of 10kN.  

 
 

Even though the beam is fixed on both walls, it seems that it has a moment of zero at the connections. 
In other words, it looks like there are hinged connections. The beam seems to be hinged due to the fact 
that plates do not have a moment mz,, since torsion in the plane of a plate is always taken up by the 
normal forces nx and ny. 
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Solution 

The solution exists in having 1D members connected to both the node and the edge of the 2D 
elements. These 1D members that do not really exist in reality are called ‘dummy members’. In this 
example, the result would look like this: 
 

 
 
But since you are adding elements, and thus rigidity to the model, you must be able to explain why 
these elements are used.  
 
In the finite element model, the beam is only connected in the node. But in reality, the entire cross-
section is cast and connected to the plate. So in reality, the beam is also connected to the wall over a 
certain region (and not in a single node). 
 
But as you can see in the image above, the dummy elements are much longer than the height of the 
cross-section, so what is the effect of the length of the dummy element? The table below shows the 
moments in the beam, as well as the rotation in the end nodes in function of the length of the dummy 
element. 
 

Length dummy-beam 
(m) 

Field moment Mz 
(kNm) 

Moment at the ends Mz 
(kNm) 

Fiz 
(mrad) 

0,0 10,00. -0,00 0,278 
0,2 6,41 -3,59 0,078 
0,4 6,20 -3,80 0,067 
1,0 6,18 -3,82 0,065 

 
As you can see, a length of 0,4m is sufficient. 
 
The beam in our example has a cross-section height of 0,5m, which more than justifies the use of a 
dummy element with a length of 0,4m to 0,5m. 
 
The moment line in the beam is now very different: 
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Example 2: Plate on a single column 

When a structure exists of a plate with a column on top of it, the user has to pay extra attention to this when 
there is a question of torsion.  
 
If the plate is subject to forces or moments, which cause torsion, very large deformations may occur. The 
thought behind it is the lack of a degree of freedom in SCIA Engineer, namely the rotation around the z-axis. 
In other words, the moment mz cannot be claimed when asking for the internal forces of a 2D element. The 
solution for this is the application of ‘dummy-members’ at the location of the connection between column and 
plate.  
 
This is clarified with the following example (“Singularities_1D_2D_Column_Plate.esa ”). 
 

Model 

Columns with a dimension of 500x500mm and a length of 4m are attached to a plate of 4x4m with a 
thickness of 500 mm.  
 
As load case, two point forces of respectively –1 kN and 1 kN are applied on the edge nodes of the plate. 
These forces are lying according to the global X-axis. In this way, the plate will be subjected to a rotation in 
his own surface without any transformation of the geometry. 
 

 
 

Results 

When the global deformation in the plate is examined, very large deformations seem to appear. This is 
especially the case at the location of the edges. The displacement at the center is zero. This indicates very 
clearly that the plate rotates around the connection with the column. 
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This phenomenon can be ascribed to the fact that the plate has no rotational stiffness around the Z-axis. 
‘Energyless’ deformation occurs, which means that the plate does not know any resistance against the 
deformation  ��. 

 

Solution 

 Dummy elements 

The top of the column must be connected to the plate with more than just a node. By applying small 
horizontal beams over the top of the column, it is possible to connect the edges of the finite plate elements to 
the top node of the column. 

After applying these dummy elements over the top of the column, it is remarkable that this deformation will 
be much smaller and nearly equal to the deformations of the plates on which the dummy-members are fixed. 
This means that an infinite rigidity is ascribed to the connection plate-column. You can verify this by 
comparing the deformation of this node in the plate with the deformation fix of the column: 

 

Applying two crossing dummy-members at the connections is a way to get a correct approach of the reality. 
These are attached to the plate by means of internal edges. This way, the small beams will take the rotation 
of the plate on themselves, so the plate has a stiffness around the Z-axis. In this case, the large 
deformations at the edges will be gone.  
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In the example, a variation of the length of the beams is applied to verify the influence on the deformations. 
With this you receive the following results with a constant mesh of 0.25 m:  
 

Length of 
dummy [m]  

qxy max 
[kN/m]  

Fiz max 
[mrad]  

Ux max 
[mm]  

0,00 57,54 -0,330 24587,503
0,05 145,83 -0,145 0,412 
0,10 38,08 -0,152 0,332 
0,15 23,52 -0,151 0,313 
0,20 13,21 -0,154 0,306 
0,25 10,63 -0,154 0,303 
0,35 6,12 -0,155 0,299 
0,50 3,55 -0,156 0,297 
0,75 1,80 -0,157 0,297 
1,00 1,78 -0,157 0,297 

 

Several conclusions can be drawn: 

• When applying members of a very short length , this will affect the rotation and deformation 
sufficiently .  

• Increasing the length of such a dummy-member will only have a small influence on the deformation 
and rotation.   

• The shear stress  qxy on the other hand, has a larger influence  when increasing the length: the 
larger the beams, the smaller the shear stress in the plate.   

• The shear stress varies little when a length of approximately half the section of the column is taken  

• When using a length  of the same dimensions as the section of the column , plausible results can 
be expected.  

• The section of the beams has a significant influence on the shear stress: a greater section gives rise 
to a smaller shear stress and reverse. 

 Preparatory to an analysis, a width equal to the dimension of the column and a height equal 
to the thickness of the plate can be considered. 
 

Mesh size 
Subsequently the size of the mesh is varied when using a constant length of the dummy-beams, namely 
0,25 m. The following results can be summarized in a table: 
 

Mesh 
Size [m]  

qxy max 
[kN/m]  

Fiz max 
[mrad]  

Ux max 
[mm]  

1 3,79 -0,147 0,301 
0,5 7,66 -0,149 0,301 
0,25 10,63 -0,154 0,303 
0,125 15,06 -0,164 0,304 
0,1 14,44 -0,173 0,304 
0,05 25.74 -0,193 0,305 
0,025 39.60 -0,242 0,305 

 
Also here following conclusions can be drawn: 

• The deformation and rotation are only influenced with the size of the mesh to a limited extent. 

• The shear stress has a larger influence: it increases as the size of the mesh decreases. 
 Preparatory to an analysis, a mesh equal to the length of the beam or the double of the length can be taken, depending on the 
thickness of the plate.  
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Eccentric elements 

Eccentric column 

Model 

 
In this chapter the effect of eccentricities is discussed.  As an example, we have constructed a simple 
frame in a frame XZ environment (“Eccentricity_column.esa ”). 

• The columns are 3m high. 

• The beam is 4m long.  

• All elements have a cross-section 300mm x 300mm  (made of C25/30). 

• A line load of 5kN/m  is applied on the beam. 
 

 
 
An eccentricity can be introduced on 2 ways 

• By changing the “Member system line at” option. 

• By introducing a value for ey and/or ez. 
 
It is not surprising that several possibilities have the same effect. 
For example this example, we set “Member system-line at” “bottom”, which would be the same as 
inputting ez = 150mm (height cross-section divided by 2). 
 
So for this example:  
 

 =  
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Results 

When looking at the moment diagram, we can notice some odd results 

• The results are non-symmetrical. 

• The moment at the bottom of the left column is not zero, although the support is hinged. 

• The moment at the top of the left column is not equal to the moment on the left of the beam. 
 

 
 
When looking at the normal forces, there is nothing strange at all. Both columns take 10 kN 
compression force of the line load of 5 kN/m over the 4m long beam. 
 

 
 
The increased moment on the left column is due to the eccentricity which has been applied. 
The additional moment can be calculated as: ∆�� = � ∗ �� = −10�� ∗ 0,15� = −1,5 ��� 
 
This explains the moment of –5,56 kNm: �� = ��,������ ���� + � ∗ � = −4,06 ��� + !−10��" ∗ 0,15� =  −4,06 ��� − 1,5 ��� =  −5,56��� 
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Interpretation 

Why do we add the extra moment? 

• In SCIA Engineer, the results are always shown for the neutral axis of the element. 

• The connections between elements, supports, etc are made in nodes, as required in a finite 
element model. The nodes are always at the ends of the system lines. 

• So if an eccentricity is applied, the neutral axis will no longer be the same as the system line. 
 
The recalculation of internal forces from the system line towards the neutral axis is what causes the 
jump in the moment line (from -4,06 kNm to -5,56 kNm). 
 
This is also represented in the image below.  

• The first column on the left is the same as you can see it in SCIA Engineer (the light blue 
line is added, representing the neutral line). 

• But in fact, you should represent an eccentric element as if the eccentricity is applied by 
small horizontal elements. This is represented in the middle image. 

• When you look at the internal forces of an element, these internal forces are always applied 
to the neutral line of the specific element. In this case, it implies that the forces in the nodes 
(coming from the beam and support) should be recalculated to the blue line. The 
recalculation is added to the third image (on the right). 
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The same principle can also be shown by creating small stiff beams. 
To do this, we have used a cross-section 3000x3000 (=’very high stiffness’), which we have converted 
to a numerical cross-section. 
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Eccentric beam 

Model 
 
In this example the effect on normal forces due to eccentricities is discussed.  As an example, we have 
constructed a simple beam in a frame XZ environment (“Eccentricity_beam.esa ”). 

• The beam is 6m long.  

• All elements have a cross-section 500mm x 300mm  (made of C25/30). 

• A line load of 10kN/m  is applied on the beam. 

• The eccentricity is inputted with “member system-line at”: “bottom”  (or � = 150��) 
 

 
 
As you can see, the line load is inputted on the beam and follows the eccentricity of the beam. 
The supports are in the nodes, which are positioned eccentrically from the neutral line of the beam. 
 

Results 

In the results, you might notice some results which you intuitively would not expect: 

• There is a normal force  (although only a line load perpendicular to the beam was applied). 

• The begin and end moments  are not zero, although the supports  are hinged . 
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Interpretation 

First let’s run over the effect of bending without the eccentricity involved. 

No eccentricity 

The results in SCIA Engineer for this same case (without eccentricity) would be: 
 

 
 

• The top fibres are in compression  due to the bending stress. So they also become shorter. #$��%��& = �� ∗ '
( � ) ∗ * 

• Due to a line load of 10kN/m over a length of 6m, the maximal moment would be: 

��,�+, � - ∗ ./
8 � �10 ��

� ∗ !6�"/

8 � �360���
8 � �45��� 

    You can see this corresponds perfectly with the result shown above.  
  The difference in sign is merely a difference in convention used by SCIA Engineer. 

• Due to this moment, the bottom fibre is compressed and will become shorter. 
 

 
 

• The bending stress is zero in the middle of the beam (= the neutral axis). 

• The bottom fibres are in tension  due to the bending stress. They would become longer. 
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With eccentricity 

Due to the eccentricity, the supports  are at the position of the bottom fibres  (in the circles in the next 
image). These bottom fibres would normally become longer due to bending, but the supports do not 
allow these displacements.  
 

 
 
As a result, the supports force the elongation at the bottom fibre to be zero by means of a reaction 
force. This can also be seen in the results. 

• The reaction force 0, from the supports introduces a normal force in the beam. 
This is a constant normal force of -90 kN over the beam. 

• Due to this reaction force, there will be no elongation at the bottom fibre. 

• And due to this reaction force at an eccentricity  ��, the moment line is shifted. 
Δ� � � ∗ �� = −90�� ∗ 0,25� = −22,5��� 

 
This causes the moments at the begin points to be -22,5 kNm and the maximal moment to 
be shifted up from 45kNm to 22,5kNm. 
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Ribs 

Introduction 
By means of the menu Structure > 2D element components> Rib  a plate can be stiffened with 
members. 
 
A rib is calculated as a beam with eccentricity with regard to the axis of the plate. The member 
elements are connected to the plate at the height of the mesh nodes.  
 
In a 3D General project, the rib can be placed below, in the middle or above the plate. A rib that lies 
below or above the plate causes membrane forces in the plate. In SCIA Engineer a rib below a plate is 
always shear resistant connected to the plate. The total rigidity is according to the rule of Steiner: 
 

Rigidity beam + Rigidity plate + Surface beam x (axis-distance-beam-plate)². 
 
So it is important to realize that also in reality the beam and the plate have to be connected shear 
resistant to each other. If it is about a prefab construction at which the plate is on the beam, then the 
beam has to be placed in the middle of the plate in the calculation model. 
 
The effective width of the rib is calculated implicitly by the behaviour of the finite elements under 
membrane forces during the Finite Elements Calculation.  In the following view of the membrane forces 
nx in the longitudinal direction of the beam, the effective width is clearly noticeable. 

 

 
 

The section of the rib can be shown graphically, in that way you can see if the effective widths overlap 
each other or not. This can be done by means of view parameters, by using 
 ‘Set view parameters for all > Structure > Draw cr oss-section’. 
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Forces in rib 
What is explained in the previous paragraph also counts for a member that is connected to a plate and 
is aligned eccentrically by an Internal edge . The difference with a plate rib is that for a rib an Effective 
Width  can be inserted too.  
 
The Effective Width was specifically implemented to follow the code concerning the calculation of the 
theoretical reinforcement. Because when the option Rib is marked with the results,  
a replacement T-section  is used to calculate the results. The height of the T-section is determined by 
the height of the beam + the height of the plate . The flange width of the T-section equals the 
entered Effective Width.  
 
The internal forces for the replacement T-beam are calculated as follows: 
 

 

 
 
 
 
 
 
 
 
 
The coordinates of the hearts are used as lever arms in the Y and Z direction: 

 
Lever arm Z1 = T1z – Tz Lever arm Y1 = T1y – Ty 
Lever arm Z2 = T2z – Tz Lever arm Y2 = T2y – Ty 
Lever arm Z3 = T3z – Tz Lever arm Y3 = T3y – Ty 
Lever arm Z = Tz – 0z Lever arm Y = Ty – 0y 

 

- N = N beam + N plate, left + N plate, right 
 

- Vy = Vy beam + Vy plate, left + Vy plate, right 
 

- Vz = Vz beam + Vz plate, left + Vz plate, right 
 

- Mx = Mx beam + Mx plate, left + Mx plate, right 
 

- My = My beam + My plate, left + My plate, right + N plate, left * (Lever arm Z1) + N plate, right 
* (Lever arm Z2) + N beam * (Lever arm Z3) 

 

- Mz = Mz beam + Mz plate, left + Mz plate, right + N plate, left * (Lever arm Y1) + N plate, right 
* (Lever arm Y2) + N beam * (Lever arm Y3) 

 
 
If the option Rib  is activated when claiming the plate forces, the internal forces in the cooperating width 
of the rib are equated with zero. This counts for the internal forces in the longitudinal direction of the 
rib. The forces perpendicular to the rib remain unchanged. 
 
These internal forces can be equated with zero for the reinforcement calculation because they are 
taken into the reinforcement calculation of the rib. And so the whole plate-beam is replaced by a T-
beam. 
 

T the heart of the entire replacement T-section  
T1 the heart of the left part of the effective width  
T2 the heart of the right part of the effective width 
T3 the heart of the original rib 
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However, note that when using several ribs below a plate element, the cooperating widths of this 
cannot overlap each other. If this does happen, the values of the internal forces are charged double on 
the spot of the overlapping parts.  

 

Model 

In the project Rib_vs_T.esa  a beam is calculated with a length of 10m and concrete quality C25/30 
according to EC. The beam is supported at the extremities, loaded with a distributed load of 200kN/m 
and has following section: 

 

 
 
The beam is modelled in 3 different ways: 

- As member element 

- As plate with a thickness of 200mm and with a rib of 200mm x 400mm below the plate 

- Entirely with Finite Elements  
 

Results 
In the results you can see that the same bending moment is 
achieved by using a rib and a plate when comparing to a beam with 
a T-section. However, this result is achieved when the option ‘rib’ is 
ticked on. 
 

 
 
 
If the option ‘Rib’ is ticked off, then the rib will show a very different result.  
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Solution 

When the option ‘Rib’ is ticked on, it means that the internal forces of the rib and its effective width 
must be combined. If the option ‘Rib’ is ticked off, only the stresses in the rib are combined to the 
internal forces.  
 

 
 
It is also possible to check how the internal forces of the rib and the plate are combined. 
 
If the option Rib is off, then you will have the next internal forces in the rib. 
These forces apply to the center of the rib, T3. 
 

 
 

The internal forces in the plate can be found by a section on the 
middle of the plate, over the width. Then the averaged results over 
this section can be found. 
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These results apply to the centre of T1 and T2 together. 
 
To find the internal forces in the rib with effective width, these two tables must be combined. 
 

�3 � �4�5+�6�+�� � !6216,26 ��" + !−6215,99 ��" = 0,27 ��  
 7�,3 = 7�,4�5 + 7�,6�+�� = !0,00 ��" + !0,00 ��" = 0,00 �� 
 ��,3 = ��,4�5 + ��,6�+�� + �4�5 ∗ 8'3 − '39:;< + �6�+�� ∗ !'3 − '3=>?@A" 
 
As you can see, in the calculation of the combined moment, we take into account the centre of gravity 
of the entire T section to take into account the normal forces in the plate and the beam. The 
recalculated forces are thus to be applied on a different centre of gravity then the centre of gravity of 
the rib or the plate. 

'3 = '39:; ∗ B4�5 + '3=>?@A ∗ B6�+��B4�5 + B6�+�� = C0,4� 2D E ∗ 0,4� ∗ 0,2� + C0,4� + 0,2� 2D E 0,2� ∗ 1,00�0,4� ∗ 0,2� + 0,2� ∗ 1,00�
= 0,016�³ + 0,100�³0,08�² + 0,20�² = 0,116�³0,28�² = 0,414286� 

 
Now that the height of the centre of gravity of the combined section is known, the combined moment 
can be calculated. ��,3 = ��,4�5 + ��,6�+�� + �4�5 ∗ 8'3 − '39:;< + �6�+�� ∗ C'3 − '3=>?@AE= 388,89 ��� + 246,10 ��� + !6216,26 ��" ∗ !0,414� − 0,200�" + !−6215,99 ��"∗ !0,414� − 0,500�"= 388,89 ��� + 246,10 ��� + !6216,26 ��" ∗ !0,214�" + !−6215,99 ��"∗ !−0,086�"= 634,99 ��� + 1332,056 ��� + 532,899 ���= 2499,845 ���  

 
When we ask for the internal forces in the rib, with the option rib activated, the same results are shown. 
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Mindlin versus Kirchhoff 

Shear force deformation 
 
For the bending behavior of plates, there are 2 types of bending theories implemented: 

- The Mindlin element including shear force deformation 

- The Kirchhoff element without shear force deformation 

 
 

With the Kirchhoff theory , a plane section of the plate remains perpendicular to the deformed axis of 
the plate in the deformed state. This traditional bending theory is applied for thin plates and is 
supported by following assumptions (ref .[1]): 

- The middle plane is free of strains and stresses 

- The stress component perpendicular to the surface (σz) is negligible (σz ≅ 0) 

- Normal stresses on the middle plane also remain perpendicular to the reference surface after the 
deformation (hypothesis of Bernoulli) 
 

For this theory the following conditions have to be satisfied:  

- The thickness t of the plate is small with regard to the span L (t/L < 1/5 ) 

- The deflections w remain small in comparison to the thickness of the plate t (w/t  < 1/5 ) 

 
On the other hand, the Mindlin theory  doesn’t have all of the above-mentioned assumptions. 
The normal stresses on the middle plane remain straight but not necessarily perpendicular to the 
middle plane after deformation. As a consequence, additional strains γxz and γyz arise in case of a 
Mindlin element.  
 
This is shown on the picture below.  

a) Represents the used symbols. 

b) Shows the Kirchhoff element.   

c) Demonstrates a Navier balk,  
which corresponds to the Kirchhoff element.  

d) The Mindlin element.  
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The choice between these two elements can be made using the menu function Calculation, mesh > 
Solver setup . Default the Mindlin theory is used and because of this, special attention has to be paid 
to the use of thin plates. 

 

 
 

 
This option is only in relation with 2D elements. Specifically for beams, the shear force deformation can 
be taken into account or not by means of the option Neglect shear force deformation (Ay, Az >> A) .  
 
The influence of the shear force deformation is especially important with thick plates with a small span.  

 

Model 

In the example MindlinKirchhoff_ShearDeformation.esa , a plate of 2m by 5m is supported at the 
shortest edges and made of concrete C25/30 according to EC. The thicknesses are 300mm, 600mm 
and 1200mm (from left to right). Surface loads of -150 kN/m2, -1200 kN/m2 and -9600 kN/m2 are 
applied. The mesh setting for finite element plates is set to 0,5m. 

 

Results 

The deflection in the middle of the plate:  
 

 Kirchhoff element Mindlin element % difference 

Plate 300 mm -17.49 mm -17.01 mm 0.5 % 

Plate 600 mm idem -18.47 mm 3.2 % 

Plate 1200 mm idem -19.24 mm 13.7 % 
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Kirchhoff versus Mindlin on the edge of an element 
In the theory of Mindlin three degrees of freedom are available on the edge of a plate element: 

  
 

o H  = deformation in the local z-direction of the plate 

o �I  = rotation around ny (rotation parallel with the edge) 

o �II  = rotation around nx (rotation perpendicular on the edge) 
 
In Kirchhoff’s theory only two variables are needed, the variable does not exist, because shear 
deformation is not taking into account in Kirchhoff’s theory.  
 
On the edge, the following forces will be taking into account for Kirchhoff and Mindlin: 

 
 

 
 
 

Kirchhoff  Mindlin  
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Kirchhoff  assumes a constant torsional moment on the end of the plate.  
 
At Mindlin’s theory, the torsional moment mxy will become zero on the edge, but this results in high values 
for vx. In Mindlin’s theory the torsional moment will go from its maximum to zero over a distance of t/2 (t = 
the plate thickness). For thin plates, this is a very small area, so when using Mindlin’s theory for thin plates a 
lot of finite elements will be necessary on the edges.  
 
This is shown in the following example. 
 

Model 

This next example (MindlinKirchhoff_edges.esa ) shows two plates with different thicknesses 
(200mm and 2250mm). The mesh of this plate is 0,5m, but on the edges a denser mesh has been 
inserted: 

 

Results 

The results on the thin and tick plates for both the Kirchhoff and Mindlin theory for different mesh sizes, 
are displayed in the table below (for the forces, the averaged results in nodes are taken). 
 

  Thin (200mm) Thick (2250mm) 

 

Element size 

edge [m] 

Uz 

[mm] 

max |mxy| 

edge 

[kNm/m] 

max. |vx| 

edge 

 [kN/m] 

Uz 

[mm] 

max |mxy| 

edge 

[kNm/m] 

max. |vx| 

edge 

 [kN/m] 

K
irc

hh
of

f 

0,5 -6,191 15,00 15,53 -0,004 15,00 15,53 

0,2 -6,184 15,03 16,35 -0,004 15,03 16,35 

0,1 -6,190 15,04 15,19 -0,004 15,00 15,19 

0,05 -6,190 15,04 16,69 -0,004 15,04 16,69 

0,03 -6,190 15,03 17,53 -0,004 15,03 17,53 

0,015 -6,190 15,04 21,37 -0,004 15,04 21,37 

M
in

dl
in

 

0,5 -6,314 14,75 212,62 -0,007 9,37 18,86 

0,2 -6,319 14,82 217,38 -0,007 9,75 18,96 

0,1 -6,328 14,82 218,54 -0,007 9,79 18,90 

0,05 -6,335 14,86 226,93 -0,007 9,80 18,92 

0,03 -6,339 14,84 228,42 -0,007 9,80 19,12 

0,015 -6,340 14,85 218,68 -0,007 9,80 19,15 
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Interpretation 

Uz 

The deformation Uz for Mindlin and Kirchhoff in the middle of the plate will be the same and will not 
depend on the border mesh size.  
 

Mxy 

Normally, the Mindlin theory would result in zero mxy using small elements. The comparison between 
Mindlin and Kirchhoff is made in the diagram below for the thin plate . It clearly shows us that for thin 
plates, there is no real difference in the result for mxy by using the Mindlin or Kirchhoff theory. 
 

 
 

 
The comparison for the tick plate shows that when the calculation is done with Mindlin, mxy reaches 
lower values, even with a rougher mesh size (a mesh of 0,5m). 
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Vx 

When looking at vx for the thin plate, the small values for vx at Kirchhoff’s calculation can clearly be 
seen, even with a small number of elements. But the Mindlin theory only gives high values for vx. 
 

 
 

In this case, calculating with Kirchhoff is a better option, because Mindlin does not give good results, 
unless you would use an unrealistic small mesh along the border. 
 
 
 
 
When investigating the thick plate, it is clear that vx remains very small for Kirchhoff, and also Mindlin 
gives good results for vx.  
 
So for thick plates, calculating with Mindlin will give the best results, because shear force deformation. 
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Conclusion 

Thin plates 

• Calculating with Kirchhoff gives the best results for thin plates 

• Using Mindlin a lot of elements will be necessary to obtain good results. 

• Using Kirchhoff, the size of the elements do not have to be smaller than the plate thickness. 
 

Thick plates 

• Calculating an isotropic, homogeneous plate, Mindlin will be necessary 

• On the edge a denser mesh will be necessary (more than 5 elements over the half of the plate 
thickness) 

• Mindlin will also give good results for thin orthotropic plates with a small shear stiffness  
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Orthotropic properties in plates 
 
The topic ‘orthotropic properties’ is available in the Concept Edition  of SCIA Engineer. 
 

Isotropic plate versus ‘1-direction’ plate 

Model 

The model Orthotropy_1direction.esa  is used to show the difference between an isotropic and 
orthotropic plate. The orthotropic plate will be modeled to transfer loads through bending in only one 
certain direction. 

 
 

 
The behavior of the plate will be investigated by checking how the load is transferred to the supports. In 
most use cases, the structure will transfer loads from the plate to the beams, and then from the beams 
to the supports. This behavior will be checked in the following steps. 
 
There is only 1 load case taken into account. In this line load, the separated beam will receive the 
same amount of load as what would be expected in the models with the plates. 

 
 
As the plates are 6m x 6m, and the surface loads are 1kN/m², the load transferred to the beams should 
be around 3kN/m. 
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Now the orthotropic properties will be applied. This can be done by selecting the 2D element, and 
changing the FEM model property to orthotropic. A new property will appear: “Orthotropy”. 
 

  
 

In OT1 (orthotropic properties), the option 2 heights will be chosen. This allows both the flexural and 
membrane strengths to be configured with height parameters. The ‘1’ direction corresponds to the x-
axis of the Local Coordinate System of the plate, the ‘2’ direction corresponds to the y-axis (which can 
also be derived from the explanatory image below). 
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Results 

The linear calculation is performed. We look at the moments in the beams to see how loads have been 
transferred. In this result, you can see that the moment in the beam is practically the same for the 
single beam and the beams with the orthotropic plate. 
 

 
 

 

Interpretation 

The difference between the isotropic and the orthotropic element is (obviously) caused by the 
orthotropic properties. The isotropic plate also has capacity to deviate the load towards the support.  
 

 
 

 
Thus the transverse bending stiffness of the isotropic load reduces the amount of load which would be 
sent to the beams. 
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This effect can also be visualised in the following manner. Isotropic plates have equal strength in all 
directions. So in relation to the stiffness of the plate, it will send loads directly to the support instead of 
to the beam, when close enough to the supports. 
 

 
 
This effect would even become more dominant if the stifnesses are higher. To show this, the thickness 
is doubled in both the orthotropic and isotropic plate. To do this, the OT1 setting is changed, and the 
properties of the isotropic plate are changed. 
 
 This is also saved in the project Orthotropy_1direction_thicker.esa . 
 

    
 
Now the beams along the isotropic edge have to take even less load, since the isotropic plate has 
higher bending stiffness in the y-direction. This allows the isotropic plate to transfer a bigger part of the 
load directly to the supports. 
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Pressure only 
 
The topic ‘pressure only’ is not available in the Concept Edition  of SCIA Engineer. 
The license code is esas.44  and it is only part of the Professional or Expert Edition . 
 

 
When using pressure 2D elements, the functionality Nonlinearity  and Pres only 2D members must be 
activated. The 2nd order  – geometric nonlinearity  functionality is also important as it allows us to use the 
Newton-Rhapson solver. 

 
 
With this option, tension in 2D elements can be automatically eliminated. This is mostly used for 
masonry elements. When using this functionality, it is advised to adjust some parameters to smoothen 
the calculation. This will be treated in the next examples. 
 
 

Masonry wall with window 

Model 

The model PressureOnly1.esa  is used to show the difference between an isotropic and linear 
calculated wall (on the left) and a pressure only calculation (on the right). 
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Since a pressure only wall cannot take any tension, there are beams added over the opening to take 
the tension in that position. 
 

To indicate which walls are calculated as pressure only, it is possible to assign the ‘Press only’ property 
to the FEM nonlinear model setting. 

 

  
 
To calculate this non-linear setting, the non-linear calculation must be done. 
This requires non-linear combinations. Since a non-linear combination is non-associative, loads must 
be combined before the calculation, as opposed to the linear calculation. And thus non-linear 
combinations are required. 

 
 

Now before starting the calculation, we will first run over the solver and mesh settings. This is very 
important in a pressure only calculation. 
 

In the solver settings: 
- The maximum iterations is set to 100. 
- The Geometrical nonlinearity solver is set to Newton-Raphson . 
- We allow the solver to us 4 iterations . 
- The solver precision ratio is reduced to 0,25. 

 
 
When the calculation is performed, the elements which take tension will have their rigidity reduced in 
the direction of the tension stress. The rigidity is reduced uniformly in that direction for the entire finite 
element. For this reason, the mesh must be sufficiently fine (in this example 0,150m is used). 
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Results 

The non-linear calculation is performed. This calculation will modify stiffnesses in the press only wall 
until tension is sufficiently reduced or until the maximum number of iterations is achieved. 
 
The difference between the isotropic and the pressure only elements can be clearly view looking at the 
normal force n1 for these members. This result can be found under 2D member – Internal forces  by 
setting the Type of forces  to Principal magnitudes . After this, n1 can be chosen as value. 

 
 

Interpretation 

By asking the results as prinicipal magnitudes, the user can ask the biggest normal force (not in the x-
direction, but in the direction with the biggest value). The biggest normal force means the most tension. 
 
As n1 is zero for the plate on the right, it is confirmed that all tension is removed from the wall.  
In the results of only the wall on the right, it is also clear to see that n1 (the normal force in the direction 
which has the biggest normal stresses and no shear stresses) is practically zero or negative. 
This also confirms that the used precision criterion in the solver settings is sufficient. 
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Cantilever with ribs as reinforcement 
When looking at the pressure diagonals in a reinforced 2D concrete element, ribs can be imported as 
reinforcement.  
 

Model 

In this example PressureOnly2.esa , a plate with a bearing support is inserted with three ribs acting as 
the reinforcement of the plate. 

 
 

Calculation 

In the non-linear calculation, the solver can indicate 
that the structure is instable if the reinforcement ribs 
are too weak for example, or if the wall cannot take 
the loads without inducing tension.  
 
To investigate the problem, you can choose to 
continue with the calculation. This allows you to see 
the results with which the non-linear solver has 
stopped. 
 
If the calculation has been performed, the status 
window shown on the right will become visible. 
 
It is clear that the non-linear calculation has found 
much bigger displacements than the linear 
calculation. 
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Looking at the results of this 2D element, the pressure diagonals inside this element are clearly visible 
(after changing the panel settings): 
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Annex 1: Calculation of Rx in eccentric beams 

Input 
Cross section = 300mm x 500mm 
Material = C25/30, with E = 31500MPa 
Line load = -10kN/m 
Length of the beam = 6m 
 

 
 

Calculation 

Formula of elongation 

The total elongation is the sum of all the elongations at all the different positions on the beam. 
Such a sum can be calculated by integration. 

• We want to integrate the elongation over the length of the beam. 

• The elongation can be calculated from the stress. 

• The stress can be calculated from the moment. 
 

J *!K"LK
M

N
� J #!K"

) LK
M

N
� ��!K" ∗ ') ∗ ( LK 

 

Moment line 

So to calculate the elongation, we need to know the moment line in function of the position on the 
beam. This bending moment is a parabola in function of x (the position on the beam). 
 
If there is no eccentricity, then the result would look like this: 
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Now to compose the parabolic function: 

�� � O ∗ K² + P ∗ K + Q 
We know about 3 points of this parabola: 

R(S  K = 0� Tℎ�V  �� =      0 ���(S  K = 3� Tℎ�V �� = −45 ���(S  K = 6� Tℎ�V  �� =      0 ��� 

 
We can compose the following set of equations: 

• W 0 = O ∗ 0/ + P ∗ 0 + Q−45 = O ∗ 3/ + P ∗ 3 + Q = 9O + 3P0 = O ∗ 6/ + P ∗ 6 + Q = 36O + 6P  

•  
We can derive from these equations that: 

W O = 5P = −30Q = 0  

Resulting in: �� = 5K² − 30K 
 

Calculation of the total elongation 

As mentioned before, the total elongation of the bottom fibre due to the bending moment can be 
calculated by 

J *!K"LKM
N = J #!K") LKM

N = J ��!K" ∗ ') ∗ ( LKM
N  

 
This elongation must is countered by a reaction force in the support. 
But in exchange, this reaction force causes an additional moment and an additional normal stress. So 
we can rewrite the equation above as: 

J *!K"LKM
N = J #!K") LKM

N = J 8��!K" − RY ∗ e[< ∗ ') ∗ ( + 0,B ∗ ) LKM
N = 0 

 

J 8��!K" − RY ∗ e[< ∗ ') ∗ ( + RYB ∗ ) LKM
N = J !5K² − 30K − RY ∗ ��" ∗ !−ℎ/2") ∗ ( + RYB ∗ ) LK M

N= − ℎ2 ∗ ) ∗ ( J !5K² − 30K − RY ∗ ��"LK + J RYB ∗ ) LK]
N

]
N

= − ℎ2 ∗ ) ∗ ( ∗ ^5K³3 − 15K² − e[RY ∗ x`N
] + aRY ∗ xbN]B ∗ )

= −0,5�
2 ∗ 31500�cO ∗ 0,3� ∗ !0,5�"³12 ∗ de5 ∗ !6"f3 − 15 ∗ !6"/ − 6 ∗ 0,25 ∗ RYg − 0h ���²

+ 6m ∗ RY0,5m ∗ 0,3m ∗ 31500MPa= −0,5�2 ∗ 31500�cO ∗ 0,003125�m ∗ !360 − 540 − 1,5 ∗ RY" ���² + 6m ∗ RY0,15m² ∗ 31500MPa= −0,5�196,875 ���² ∗ !−180 ���² − 1,5 ∗ RY ∗ Nm²" + 6m ∗ RY4725 MN= 90 ��� + 0,75�0,196,875 �� + 6m ∗ RY4725 MN = 24 ∗ 90 ��� + 24 ∗ 0,75� ∗ 0, + 6� ∗ 0,4725 �� = 0 

 
Or, it can be simply concluded that: 24 ∗ 90 ��� + 24 ∗ 0,75� ∗ 0, + 6� ∗ 0, = 0 24 ∗ 90�� + 18 ∗ 0, + 6 ∗ 0, = 0 0, = −90 �� 
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Annex 2: “Location”, the post-processing of results  
 
During a calculation in SCIA Engineer, the node deformations and the reactions are calculated exactly 
(by means of the displacement method). The stresses and internal forces are derived from these 
magnitudes by means of the assumed basic functions, and are therefore in the Finite Elements Method 
always less accurate.  
 
The Finite Elements Mesh in SCIA Engineer exists of linear 3- and/or 4-angular elements. Per mesh 
element 3 or 4 results are calculated, one in each node. When asking the results on 2D members, the 
option ‘Location’ in the Properties window gives the possibility to display these results in 4 ways. 
 

A. In nodes, no average 
All of the values of the results are taken into account, there is no averaging. In each node are therefore 
the 4 values of the adjacent mesh elements shown. If these 4 results differ a lot from each other, it is 
an indication that the chosen mesh size is too large. 
This display of results therefore gives a good idea of the discretisation error in the calculation model.  
 

   
 

B.  In centres 

Per finite element, the mean value of the results in the nodes of that element is calculated. Since there 
is only 1 result per element, the display of isobands becomes a mosaic. The course over a section is a 
curve with a constant step per mesh element.  
 

   
 

C.  In nodes, average 

The values of the results of adjacent finite elements are averaged in the common node. Because of 
this, the graphical display is a smooth course of isobands. 
 
In certain cases, it is not permissible to average the values of the results in the common node: 
- At the transition between 2D members (plates, walls, shells) with different local axes. 
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- If a result is really discontinuous, like the shear force at the place of a line support in a plate. The 
peaks will disappear completely by the averaging of positive and negative shear forces. 
 

   
 

D.  In nodes, average on macro 

The values of the results are averaged per node only over mesh elements which belong to the same 
2D member ánd which have the same directions of their local axes. This resolves the problems 
mentioned at the option ‘In nodes, average’.  
 

   
 
 

Accuracy of the results 

If the results according to the 4 locations differ a lot, then the results are inaccurate and the mesh has 
to be refined. A basic rule for a good size of the mesh elements, is to take 1 to 2 times the thickness of 
the plate. 
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Annex 3: Theoretical background of orthotropic prop erties 

Theory 

Strains and stresses 

In a 3D model, the following components of deformations appear in each point (respectively the 
deformations according to the x-, y- and z-axes): 

o!K, p, '"q!K, p, '"H!K, p, '" 

 
From these deformations the following strains can be calculated:  

r =
⎣⎢
⎢⎢
⎢⎡

ε,ε�ε�ε,�ε,�ε��⎦⎥
⎥⎥
⎥⎤ =

⎣⎢
⎢⎢
⎢⎢
⎢⎡ Lo LKDLq LpDLH L'D0.5 ∗ {,�0.5 ∗ {,�0.5 ∗ {��⎦⎥

⎥⎥
⎥⎥
⎥⎤

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

Lo LKDLq LpDLH L'D
0.5 ∗ CLq LKD + Lo LpD E
0.5 ∗ CLo L'D + LH LKD E
0.5 ∗ CLH LpD + Lq L'D E⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎤
 

The stresses in each point are: 

# =
⎣⎢
⎢⎢
⎢⎡

#,#�#�#,�#,�#��⎦⎥
⎥⎥
⎥⎤
 

 
The stresses and strains are connected to each other, in the simplest case this connection is linear (Hooke’s 
law): 

σ = D ε 
 

D is a 6x6 matrix. The connection between stresses and strains is not based on assumptions, but describes 
the real physical behavior of the material. For that reason, this matrix is called the “constitutive” matrix.  
 

Internal forces 

In the analysis of a 2D plate, the stresses are replaced by internal forces, which we will indicate with the 
symbol ‘s’. These internal forces are known as the results of SCIA Engineer: 

s = [smT, sbT] 
 

sm = [nx, ny, qxy]T for membrane forces 
sb = [mx, my, mxy, qx, qy]T for bending 

 
The components of the deformations that are used with a 2D plate are the deformation of the axis of the 
plate (w), the rotation on the x-axis (φx) and the rotation on the y-axis (φy). 
 

w(x, y) = w(x, y, 0) 
 

φx(x, y) 
 

φy(x, y) 
 
 
With the Kirchhoff element the normal remains on the plate axis perpendicular to the plate axis. So there is a 
double connection between w and φ: 
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φy = -dw/dx 
 

φx = dw/dy 
 
 
With the Mindlin element the shear force deformations γxz and γyz also occur: 

 
φy = -dw/dx + γxz 

 
φx = dw/dy + γyz  

 
 

 
 

Relation between strains and internal forces 

From these 3 components of the deformation the strain can be calculated in each point of the plate (with the 
usual assumption that an even cross-section remains plane). From this strain the stress can be calculated in 
each point of the plate by means of the constitutive matrix. Through integration of these stresses over the 
thickness of the plate, the internal forces that belong to the deformation can be calculated (for the full 
calculation is referred to ref. [2]). 
 
 
This gives the following connection for the membrane forces and deformations in the plane: 
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For bending components and deformations from the plane: 
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‘means the derivative to x, •, means the derivative to y.  ϕ'y en -ϕ•

x are curves. 
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In most textbooks the shear force deformation is neglected. Then: 
 

ϕ'y = -d2w/dx2 = curve κxx 

 

-ϕ•
x = -d2w/dy2 = curve κyy 

 
ϕ•

y  - ϕ'x = -d2w/dxdy -d2w/dxdy = -2 d2w/dxdy = curve 2 κxy 

 

The matrix for the bending effects is subsequently written as: 
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By dividing the membrane force components and the bending components, it is implicitly assumed that these 
components do not mutually influence each other.  
 
These stiffness matrixes do not only describe the physical behaviour of the material, but also the stiffness of 
a plate element. This is specified by the material, possibly different materials over the thickness (reinforced 
concrete, laminated plates) and by the geometry (ribs, …). 
 
 
In SCIA Engineer the following components are entered in this matrix: 
 

d11, d22, d33 and d 12 
D11, D22, D33, D44, D55, D12 

 

 

D44 and D55 are added because Mindlin elements with shear force deformations are used. In many cases 
there are no simple formulas to calculate these stiffnesses.  
 
The orthotropic parameters can be calculated by means of following formulas: 
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for plate elements :  

 

Dmm � G~f ∙ h1.2  

D�� = G/f ∙ h1.2  

 
G13 and G23 are used for the calculation of the stiffnesses D44 and D55. These are the stiffnesses for shear 
force deformation. In some cases they cannot be calculated exactly. In that case it is advised to enter D44 
and D55 much larger (1000 times larger) than the other stiffnesses.  
In this way you will neglect the shear force deformation. The influence of the shear force deformation is 
restricted with normal plate thicknesses/stresses. 
The best method to have a better approach for G13 and G23 is to calculate with following formulas: 

 

 

for “wall” elements: 

 

 
 
 
 
Shell elements have both characteristics of a plate element as from a “wall” element. That way all physical 
constants, as described above, need to be applied.  

 
A real example is the use of floor plates that wear out in only one direction. With this, you can use orthotropic 
parameters. In the two directions several stiffnesses need to be applied, to which you can attribute a quasi 
neglected stiffness to the shear direction.  
 
Another method to model this real example can be done as follows: you reduce the measurements of the 
plate a bit so they just fail to hit the non-supporting beams. What’s more, you attribute a Poisson coefficient 
of 0 to the plate material.  

A plate that is respectively torn and not torn in the X and the Y direction can also be modeled as a plate with 
orthotropic parameters. This way a different E-module can be applied in both directions. 
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Library of orthotropic properties 
In SCIA Engineer there are different standard cases of orthotropic types implemented. 
 

 
 

Standard 

This is the standard case of an orthotropic type where you have access to all available orthotropic 
parameters. The user must input all parameters himself:  D11, D22, D12, D33, D44, D55, d11, d22, d12 and 
d33. 

 

Two heights 

This orthotropic type simulates a slab with a different thickness in local x and local y direction. 
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The user must input the effective heights and reduction coefficients: 
 

 
 
 
Then the orthotropic stiffness parameters are calculated: 
 

D~~ � E. d~f12. !1 − ν/" 

D// = E. d/f12. !1 − ν/" 

D~/ = ν. �D~~. D// 

Dff = γ�~. !1 − ν". �D~~. D//2  

Dmm = G. d~β  

D�� = G. d/β  

 
With: γ�~ = torsion reduction coeff. β = shear reduction coeff. 

d~~ = E. h~!1 − ν/" 
d// = E. h/!1 − ν/" 
d~/ = ν. �d~~. d// 
dff = γ�/. !1 − ν". �d~~. d//2  
 
With: γ�/ = shear reduction coeff. 
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One direction slab 

Simulation of a slab which carries it’s load mainly in one direction: 
 

 
 
The rigidity in the main direction is calculated based upon the properties of a user defined cross-section. The 
user should define the cross-section (CSS) of these unidirectional prefab elements and then use this CSS to 
define the orthotropy. 
 
 
Along with the CSS, the user must input the height of the topping h and the distance (L) between the 
elements: 

 
 
All orthotropic parameters are calculated: 

 

D~~ � E~. I~
L  

D// � E/. hf12  
D~/ = 0 
Dff = CG~. It~L E + �G/. hf3 �8  
Dmm = G~. Az~L  
D�� = G/. h1.2  
 

 

d~~ = E/. h~!1 − ν/" 
d// = E/. h/!1 − ν/" 
d~/ = ν. �d~~. d// 
dff = !1 − ν". �d~~. d//2  
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Slab with ribs – rib inputted by the user 

Simulation of a slab with ribs in one direction: 
 

 
 
The user must input the rib dimensions, rib spacing and slab 
height. 
 
 
With these parameters, the orthotropic stiffnesses are 
calculated: 
 
 
 

 

D~~ � E. Ia1  
D// = E. a1. hf

12. ^a1 − t + eChHEf . tg` 
D~/ = 0 
Dff = E. hf12. !1 − ν" + G. It2. a1 
Dmm = G. h1.2  
D�� = G. Aza1  
 

 d~~ = E~. d~ d// = E/. d/ 
d~/ = �d~~. d// 
dff = �d~~. d//2  
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Slab with ribs – rib selected from the cross-sectio n library 

Simulation of a slab with ribs in one direction: 

 
 
The user must select the rib from the library and input the rib spacing and slab height.. 
 
 
All orthotropic parameters are calculated: 
 

 

D~~ � E~. I~
L  

D// � E/. hf12  
D~/ = 0 
Dff = !G~. It~" + �G/. hf3 �8  
Dmm = G/. h1.2  
D�� = G~. Az~L  
 

 

d~~ = E/. d~!1 − ν/" 
d// = E/. d/!1 − ν/" 
d~/ = ν. �d~~. d// 
dff = !1 − ν". �d~~. d//2  
 

With: 
• index 1 – Cross-section properties 
• index 2 - Slab properties 
• Properties are taken from CSS and material: 

o E modulus )� 
o Moment of inertia (~ 
o Torsional moment of inertia (�~ 
o Effective surface for shear B�~ 

• G modulus  �� 
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Grid work – ribs inputted by the user 

This orthotropic type simulates a slab with ribs in local x and local y direction. 
 

 

 
 
The user must input the rib dimensions, rib spacing and slab height. 
 
 
 
 
 
From this input, all orthotropic parameters are calculated. 
 

 

D~~ � E~. I~
b1  

D// � E/. I/
a1  

D~/ � 0 

Dff �
CG~. It~

b1 E � CG/. It/
a1 E

4  

Dmm � G. Az1
b1  

D�� � G. Az2
a1  

 

 

d~~ � E~. h~ 
d// � E/. h/ 
d~/ � �d~~. d// 

dff � �d~~. d//
2  
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Grid work – ribs selected from the cross-section li brary 

This orthotropic type simulates a slab with ribs in local x and local y direction. 
 

 

 
 
 
The user must select the ribs from the library and input the rib spacings and slab height. 
 
 
 
All orthotropic parameters are calculated: 

D~~ � E~. I~
b1  

D// � E/. I/
a1  

D~/ � 0 

Dff �
CG~. It~

b1 E � CG/. It/
a1 E

4  

Dmm � G. Az1
b1  

D�� � G. Az2
a1  

 

d~~ � E~. h~ 
d// � E/. h/ 
d~/ � �d~~. d// 

dff � �d~~. d//
2  

 

With: 
• Properties are taken from CSS and 

material: 
o E modulus )� 
o Moment of inertia (� 
o Torsional moment of inertia (� � 
o Effective surface for shear B� � 
o G modulus  G� 
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